Live Imaging of Bicoid-Dependent Transcription in Drosophila Embryos
نویسندگان
چکیده
The early Drosophila embryo is an ideal model to understand the transcriptional regulation of well-defined patterns of gene expression in a developing organism. In this system, snapshots of transcription measurements obtained by RNA FISH on fixed samples cannot provide the temporal resolution needed to distinguish spatial heterogeneity from inherent noise. Here, we used the MS2-MCP system to visualize in living embryos nascent transcripts expressed from the canonical hunchback (hb) promoter under the control of Bicoid (Bcd). The hb-MS2 reporter is expressed as synchronously as endogenous hb in the anterior half of the embryo, but unlike hb it is also active in the posterior, though more heterogeneously and more transiently than in the anterior. The length and intensity of active transcription periods in the anterior are strongly reduced in absence of Bcd, whereas posterior ones are mostly Bcd independent. This posterior noisy signal decreases progressively through nuclear divisions, so that the MS2 reporter expression mimics the known anterior hb pattern at cellularization. We propose that the establishment of the hb pattern relies on Bcd-dependent lengthening of transcriptional activity periods in the anterior and may require two distinct repression mechanisms in the posterior.
منابع مشابه
Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae).
The Drosophila gene bicoid functions at the beginning of a gene cascade that specifies anterior structures in the embryo. Its transcripts are localized at the anterior pole of the oocyte, giving rise to a Bicoid protein gradient, which regulates the spatially restricted expression of target genes along the anterior-posterior axis of the embryo in a concentration-dependent manner. The morphogen ...
متن کاملDense Bicoid hubs accentuate binding along the morphogen gradient.
Morphogen gradients direct the spatial patterning of developing embryos; however, the mechanisms by which these gradients are interpreted remain elusive. Here we used lattice light-sheet microscopy to perform in vivo single-molecule imaging in early Drosophila melanogaster embryos of the transcription factor Bicoid that forms a gradient and initiates patterning along the anteroposterior axis. I...
متن کاملBicoid by the Numbers: Quantifying a Morphogen Gradient
Morphogen gradients are typically analyzed from static images of fixed embryonic tissues. Two papers in this issue of Cell now report live imaging of the Bicoid gradient in developing fruit fly embryos (Gregor et al., 2007a, 2007b). Their findings indicate that the gradient is highly reproducible from embryo to embryo and reveal that the nuclear dynamics of Bicoid are critical for maintaining p...
متن کاملSpecific DNA recognition and intersite spacing are critical for action of the bicoid morphogen.
We examined DNA site recognition by Bicoid and its importance for pattern formation in developing Drosophila embryos. Using altered DNA specificity Bicoid mutants and appropriate reporter genes, we show that Bicoid distinguishes among related DNA-binding sites in vivo by a specific contact between amino acid 9 of its recognition alpha-helix (lysine 50 of the homeodomain) and bp 7 of the site. T...
متن کاملDrosophila embryonic pattern repair: how embryos respond to bicoid dosage alteration.
The product of the maternal effect gene, bicoid (bcd), is a transcription factor that acts in a concentration-dependent fashion to direct the establishment of anterior fates in the Drosophila melanogaster embryo. Embryos laid by mothers with fewer or greater than the normal two copies of bcd show initial alterations in the expression of the gap, segmentation and segment polarity genes, as well ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013